

The record of flood basalt magmatism in Siberia, and origin of the Ni-Cu-PGE sulfide ores at Noril'sk-Talnakh

Peter C. Lightfoot, Vale Base Metals

Contained nickel and produced nickel by camp (deposit) Noril'sk is the largest Ni-Cu-PGE Deposit in the World

Lightfoot (2016)

Economics of Noril'sk Nickel Negative cost of Ni production on global sulfide cost curve Giant reserves and resources to support future production

From: Mitchell (2013)

Cumulative Production (kt Ni)

Ore type	Deposit group	Category	Ore, Mmt	Ni wt%	Cu wt%	Pd g/t	Pt g/t	Au g/t	6E g/t	Ni k
Ni-rich	Talnakh	PP+MII	257	2.96	3.59	6.76	1.36	0.22	8.61	7593
Cuprous	Talnakh	PP+MII	158	0.94	3.93	8.86	2.22	0.63	11.28	1477
Disseminated	Talnakh-Noril's	PP+MII	1961	0.49	0.99	2.99	0.91	0.19	4.08	9573

Noril'sk Nickel, 2015: Polar MRMR

The Noril'sk Discoveries Contained Ni at time of discovery (all deposits >0.75% Ni)

Year of discovery of deposit

History of the Noril'sk Mining Camp

Major events (initial discovery):

- Bronze-age artifacts
- •1866: Staked for Cu and coal
- •1915: Re-staked
- •1920: Urvantsov identified Cu-Ni minerals (Sudbury analogue)
- •1923: First shaft (Noril'sk 1)
- •1935: Noril'sk Kombinat established

Gulag history:

Norillag: Norilsk gulag 1935-1956
Labor force constructed the Norilsk mining-metallurgic complex
Peak of 72,500 prisoners in 1951
Total number of inmates ~400,000 (includes 300,000 political prisoners).
1953: Noril'sk Uprising (Gorlag revolt)

Built on melting permafrost – entire infrastructure of city and mining camp

History of the Mining Camp

Major events:

•1960:Talnakh mineralisation discovered in boulders and scree

- •1966: Mayak Mine commissioned
- •1971: Komsomolsk Mine commissioned
- •1974: Oktyabrysk Mine commissioned
- •1982: Taimyrsk Mine commissioned
- •2004: Skalisty Mine ramping-up
- •2013: Sverny-Gluboky mine plan and construction

The Pathway to the Noril'sk Project

- 1985: USSR closed door (Chernenko, Andropov cronies)
- 1986: Chernobyl
 - Nick Gorbachev PCL secured plan to work on basalt geochemistry/chemostratigraphy with IES USSR Ac Sci
 - 1987: first basalt samples arrived (SG-9)
 - Tony Naldrett joined project (ore deposits)
- 1988: USSR opened door (Gorbachev: Perestroika and Glasnost)
 - Valeri Fedorenko (TsNIGRI) joined project (geology)
 - 1988: Chris Hawkesworth joined project (radiogenic isotopes)
 - Copious samples arrived from basalt stratigraphy, intrusions, and ore deposits (and duplicated to USGS[©])
- 1989: Berlin Wall falls
- 1991: Soviet coup attempt: Yeltsin
- 1999: Door starts to close: Putin
 - 2000: Ed Ripley joins study (stable isotope study of basalts)
 - 2002: Visiting scientist IGEM Russia Ac Sci
 - Igor Zotov keeps foot in door
 - 2005: Reid Keays joins team (low level PGE study of basalts)
- ~2006: Door effectively closed
- 2016: Sample suite (basalts and intrusions) carefully retained for future work

Distribution of Siberian Trap Basalts

Lightfoot and Zotov (2014) Naldrett et al (1995); http://www.largeigneousprovinces.org/LOM.html

Basalt Stratigraphy of the Noril'sk Region

Basalt escarpment east of Talnakh: Iv-Sv-Gd-Nd Formation basalts

June, 1987

~5km north of here, drill core SG32 drilled through 3 km of basalt during Soviet-era exploration

Base of basalts

Noril'sk-Kharaelakh Fault

Underlain by Kharaelakh and Talnakh Intrusions

Myak Mine

Composite Chemostratigraphy – Noril'sk

Composite Chemostratigraphy – Noril'sk Basalts

Composite Chemostratigraphy – Noril'sk Basalts

Siberian Trap basalts: MgO versus Ni

Ni (ppm)

Composite Chemostratigraphy – Noril'sk Basalts

Samoedsky

Siberian Trap basalts: MgO versus Pd

Distribution of mines on the Talnakh-Kharaelakh Intrusions

Stratigraphic column showing the position of differentiated intrusions in Devonian and Lower Permian sedimentary rocks

Petrology of the Talnakh and Kharaelakh Intrusions

Rock unit		Modal % olivine	MgO wt %	Important Minerals		
Leucocratic gabbro		0-3	4-8	PI ₁		
Quartz diorite (Russian: quartz gabbrodiorite)		0	1.2-1.7	Pl ₂ + Aug + Qtz		
Magnetite gabbro		0-4	4.4-7	Pl ₂ + Aug + Mt		
Prismatic gabbro (Russian: gabbro- diorite)		0-5	6-7	Pl ₂ + Aug		
Ш	Olivine- bearing	3-7	6-8	Pl ₂ +Aug + Ol ₂		
BRODOLERITI	Olivine	10-27	9-12	Pl ₂ +Aug + Ol ₂ + sparse Pl ₁		
GAB	Picritic	40-80	18-29	Ol ₁ + Pl ₂ + Aug + Sulphide + Pl ₁ glom + sparse Pl ₁		
	Taxitic	7-18	9-16	PI ₂ + OI ₂ + Aug + Sulphide + Pկ glom		
	Contact	10-15	7-8	$Pl_2 + Aug + Ol_2$		

Talnakh: Komsomolsk Mine Lower Taxitic Gabbrodolerite

RX187911 (C03-0838) Taxitic gabbrodolerite, Noril'sk II Intrusion

Picritic gabbrodolerite (C02-0590)

Olivine melagabbro (C02-0584)

Olivine gabbrodolerite (C02-0583)

Geology of the Kharaelakh Intrusion

Geological Sections Showing Rock Types Developed in SW Branch, Talnakh Intrusion

Geological Sections Showing Rock Types Developed in Flanking Apophysis of the NE Talnakh Intrusion

Geological section through the western flank of the Kharaelakh Intrusion

Geological section through the western flank of Kharaelakh Intrusion

Kharaelakh Intrusion: Apophyses of Chilled Gabbrodolerite in recrystallized marl

Kharaelakh Intrusion recrystallized marl; spotted hornfels (952m; Drill Core TG21)

Talnakh Type and Low Talnakh Type Intrusions: La/Sm (contamination index) versus Ni/Ni* (sulfide control index)

Low Talnakh Type Intrusions are Ni-depleted Relative to Talnakh Type and WPB

VALE

Isopachs (thickness) of Ni - Cu - PGE - depleted basalts of Nd

NORIL'SK

Underlain by Low Talnakh Type Intrusions

Skalisty and Gluboky Mines, Talnakh and Kharaelakh Intrusion:

North-facing SectionWestEast

Lightfoot and Evans-Lamswood (2014)

Process of space-creating along mantlepenetrating transform faults

Monteiro and Lightfoot, 2006; Lightfoot and Evans-Lamswood, 2016

Principal ore types at Kharaelakh and Talnakh

Disseminated Sulphide: distribution at Talnakh and Kharaelakh

Taxitic gabbrodolerite – Oktyabrysk Mine (Kharaelakh Intrusion)

Disseminated sulfide ores

Field Number	8023
RX number	200525
PTS number	C02-0049
Sampled by	PCL (1989)
Intrusion	Oktyabrsky 1 shaft; Oktyabrsky Intrusion
Rock type	Taxitic hypidiomorphic- textured mela augite troctolite.
Mineralogy	This specimen has a fairly pristine pyrrhotite dominant assemblage with po>>cp>pn with minor cubanite. The usual tiny grains are associated with alteration cracks in olivine.
Mine	Oktyabrsky 1 snaft; Oktyabrsky Intrusion
MgO (wt%)	n.a.
Ni (wt%)	0.96
Cu (wt%)	2.91
Co (wt%)	0.03
S (wt%)	5.13
Pt (ppm)	3.66
Pd (ppm)	11.30
Au (ppm)	0.93

Noril'sk: Medvezhy Ruchei. Picritic gabbrodolerite with stock-work of sulphide veins – injection of massive sulfide into consolidated intrusion

Field Number	n.a.
RX number	187921
PTS number	n.a.
Sampled by	PCL
Intrusion	Noril'sk I
Rock type	MASU vein cutting Taxitic
	gabbrodolerite
Mineralogy	Massive cpy-pn-po
Mine	Bears Brook
MgO (wt%)	n.a.
Ni (wt%)	5.51
Cu (wt%)	29.2
Co (wt%)	0.07
S (wt%)	33.2
Pt (ppm)	72.4
Pd (ppm)	334
Au (ppm)	0.53

RX187921

- Disseminated sulphide
- Massive Ni-rich sulphide
- Cuprous sulphide
- (Upper taxite reef sulphide)

Massive Ore Thickness – Kharaelakh and Talnakh

Massive ore thickness (m)

Outcrop

After Krivtsov et al. (2001)

Kharaelakh Intrusion Mineralogy of the High Grade Ni Ores

Geological Relationships between the Talnak Intrusion, the orebodies and the country rocks

Skalisty Mine, Talnakh Intrusion: MASU cutting footwall shales of Tungusskaya Series – typical of massive Ni-rich sulfides

Lightfoot, 2016

Talnakh and Oktyabrsk Deposits Concentrations of Ni and Cu in different Ni-rich ore types

Ni tenor of sulfides from Noril'sk, Talnakh, and Kharaelakh

Modified from Lightfoot (2016)

Geochemistry of the Noril'sk ores

Lightfoot, 2016

Principal ore types at Talnakh

- Disseminated sulphide
- Massive Ni-rich sulphide
- Cuprous sulphide
- Upper taxite reef

Cuprous Ores Oktyabrysk Deposit

Lightfoot and Zotov, 2013

Talnakh Intrusion: Skalisty Mine. Cuprous Ore along bedding in footwall hornfels

Cuprous ore – developed in footwall of Skalisty Mine

Talnakh Distribution of Gabbroids with Low-Sulphide PGE Mineralisation

Process Controls on Formation of Nickel Sulfides

Tetonic Setting

Key Process Controls

- Syn-tectonic and post-tectonic modification
-) Sulphide segregation and fractionation
- Sulphide saturation and metal-endowment
- Emplacement

6

5

- Fractionation and contamination
- Ascent of magma
- Generate ultramafic magma from metal-endowed source

After: Lightfoot (2007), Naldrett (2010) and Begg et al (2011)

Jinchuan Model Sequential Emplacement of Sulfide-bearing silicate melts

A Model for Voisey's Bay Compressed into a single N-S section

Lightfoot et al (2011)

"China Model": extensional spaces in transform fault systems act as "magma highways" from mantle to surface and control many small differentiated intrusions with nickel sulphide deposits

Nickel mineralization related to episodes of crustal growth

% juvenile crust

Special thanks to:

Nick Gorbachev, Will Doherty, Tony Naldrett, Chris Hawkesworth, Valeri Fedorenko, Ed Ripley, Reid Keays, and Igor Zotov

Noril'sk Nickel Taimyr Government IGEM-RAS, IEM-RAS OGS University of Toronto Open University GSC University of Melbourne University of Indiana Vale

http://store.elsevier.com/Nickel-Sulfide-Ores-and-Impact-Melts/Peter-Lightfoot/isbn-9780128040508/ Rever Lightfoot NICKEL SULFIDE ORES AND IMPACT MELTS: ORIGIN OF THE SUDBURY IGNEOUS COMPLEX

Nickel Sulfide Ores and Impact Melts

Origin of the Sudbury Igneous Complex Peter C. Lightfoot Chief Geologist, Nickel, Vale Brownfield Exploration; Adjunct Professor, Earth Sciences, Laurentian University, Ontario, Canada; Associate Editor, Ore Geology Reviews

A classic case study forging research from the fields of economic geology, petrology, geochemistry, geophysics, and the study of large terrestrial and extra-terrestrial impact structures