

Nickel Sulfide Ore Deposits and Impact Melts: Origin of the Sudbury Igneous Complex

Peter C. Lightfoot - January 20, 2017

Some of the Major Debates in Sudbury Geology

- 1. Timelines:
 - Short-lived catastrophic event
 - Uniform long-lived processes
- 2. Formation of the SIC and Sudbury Structure:
 - Explosive endogenic magmatic event
 - Impact cratering
 - Impact melting and differentiation

3. Source of the magmatic rocks:

- Mantle-derived melt
- Wholesale crustal melting
- 4. Formation of the Ni-Cu-PGE sulfide ores:
 - Primary localization of dense immiscible magmatic sulfide
 - Post-magmatic processes (formation/modification)
- 5. Origin of the metals:
 - Emplacement of sulfides from depth
 - Sourced from the melt sheet
- 6. Deformation history:
 - Relatives roles of different orogenic events
 - Shape and deep configuration of the Sudbury Structure

The Sudbury Event at a 1.85Ga cratonic margin

Sudbury Structure - 100+ years of terminology to describe rocks produced by impact process

Lightfoot (2016)

Sudbury Igneous Complex: distribution of Sublayer and Offset Dykes

81.15

80°45

Deep structure – a preferred model

Lightfoot (2016) modified after Gibson (2003)

Lightfoot

Objectives

- 1. Timelines and processes:
 - Sudbury Breccia
 - Offsets
 - Main Mass
 - Sublayer

Sequence of events

- 1. Diversity in styles of mineralization
- 2. Linkages between melt sheet processes and ore deposits
 - Source of the metals
 - Thickness of melt sheet
- 3. Primary magmatic and post-magmatic processes
- 4. Place Sudbury ores in a global context: past, present, and future

Shatter cones

Catastrophic initial impact event recorded in country rocks

Sudbury Breccia

Geochemical evidence consistent with local derivation from country rocks of the matrix of Sudbury Breccia

Lightfoot

Lightfoot (2016); and O'Callaghan et al., (2016)

Quartz Diorite Offset Distribution and Configuration

Discontinuous segmented Offset in proximal Sudbury Breccia (Frood-Stobie)

Stewart and Lightfoot (2012); Lightfoot (2016)

Quartz Diorite "pod" in Sudbury Breccia (Stobie East)

Geological Relationships Within Offset Dykes (Totten)

Lightfoot (2016) and Lightfoot and Farrow (2002)

Lightfoot

Geological relationships at Totten

Geochemical relationships at Totten indicate that QD and MIQD were derived from a similar magma type with different sulfide saturation status and inclusion content

The Main Mass in the South Range is strongly deformed

Petrography of the South Range Main Mass (Creighton Traverse)

Physical property and chemical stratigraphy of the Creighton traverse

Lightfoot (2016) and Lightfoot and Zotov (2007)

Physical property and chemical stratigraphy of the Creighton traverse

Lightfoot (2016) and Lightfoot and Zotov (2007)

One Main Mass magma type in North and South Ranges

The Sublayer: inclusion-rich variably mineralized unit in troughs and embayments at the base of the SIC

Distribution and geometry of Sublayer embayment's and troughs

Sublayer Granite Breccia

Sublayer Norite

Heterogeneity in the composition of Sublayer Norite matrix from different troughs – local inclusion populations are a dominant control on matrix composition

Petrography of 1.85Ga (U-Pb zircon, baddeleyite) ultramafic inclusions

Lightfoot (2016) and Corfu and Lightfoot (1996)

Sequence of events

Lightfoot (2016) and Keays and Lightfoot (2004)

Timeline and sequence of events at Sudbury (a brave view)

		10 ⁻¹⁶	10-15	10-14	10-13	10-12	10-11	10-10	10-9	10-8	10-7	10 ⁻⁶	10-5	10-4	10-3	10-2	10-1	100	10 ¹	10 ²
	~0 sec -	0.0003 sec -	0.003 sec -	0.03 sec -	0.3 sec -	3 sec -	30 sec -	5 min -	52 min -	87 hrs -	36 days -	1 уг-	10 yr -	100 yr -	1000 yr -	10k yr -	100k yr -	1Ma -	10Ma -	100Ma -
Impact																				
Transient crater																				
Rim collapse & uplift						12		1												
Sudbury breccia formation															1					
Shock crystallization (shatter cones)								1						- (
Melt sheet initiation																				
Injection of QD into offsets					1															
Inititiation of sulfide saturation in melt sheet																				
Injection of IQD into offsets		-			- 1			-0-					1							
Sublayer norite & granite breccia formation						1														
Mafic norite crystallisation			1																	
Norite crystallisation		1		-			1			1	1		1							
Granophyre crystallisation														- U -	14					
Gabbro crystallisation					1															
Onaping fall back breccia																				
Onaping melt bodies			1		į.	1	-	3									1		1	
Onaping reworked sediments																				
Onwatin formation																				
VMS formation														1						
Breccia belt ores						1.1				-										
Contact ores												- 10								
Footwall ores																				
Crater-wall readjustment																				
Chelmsford formation							1													

Time after 1850Ma Impact Event

Objectives

- 1. Timelines and processes:
- 2. Diversity in styles of mineralization
 - Contact and footwall (Creighton and Victor)
 - Offsets (Copper Cliff)
- 3. Linkages between melt sheet processes and ore deposits
- 4. Primary magmatic and post-magmatic processes
- 5. Place Sudbury ores in a global context: past, present, and future

The Creighton Deposit

The Creighton Troughs

Lightfoot (2016) with thanks to Lisa Gibson

The Creighton Deposit

With permission: Archives of Ontario

Good examples of displacement of contact ores along structures (but are some of the ore bodies primary?)

Creighton Deep

Lightfoot (2016) with special thanks to Rob Pelkey

400 OB: 5.7 %Ni - 3.5 %Cu - 1.1 g/t 3E over 35 m true width

461 OB: 2.1 %Ni - 5.7 %Cu - 5.3 g/t 3E over 10 m true width

310 OB: 5.2 %Ni - 2.7 %Cu - 2.5 g/t 3E over 20 m true width

320 OB: 2.6 %Ni - 4.6 %Cu - 4.8 g/t 3E over 10 m true width

Sulfides become richer in Pn+Cpy and develop a higher Cu/(Cu+Ni) with distance down a trough

Compositional diversity in Sulfide ores is a function of host rock

East Range – Victor Mineral System

Mineralogy of the Massive Sulfides at Victor

Typical contact sulfide mineralogy

Transitional to Footwall Sulfide Mineralogy

Compositional diversity at Victor

The Copper Cliff Deposit

Copper Cliff – relationship to the melt sheet

2cm

Styles of Mineralization at Copper Cliff

2cm

2cm

Compositional diversity

Generalised Paragenesis

		Paragenesis	Ore deposit environment						
Minerals	Early magmatic	Intermediate magmatic late magmatic	Post-magmatic	Contact sulfides	Transitional sulfides	Footwall sulfides	Offset and Breccia Belf sulfides		
HSHPM*						-	4		
Arsenides	-		-	121					
Granular pentladite									
mss*									
Pyrrhotite									
Flame pentlandite									
Pyrite			_						
Chalcopyrite									
Cubanite									
ISS*			5						
Millerite				_					
Bornite		-							
Native silver		-				_			
Native gold									
LSHPM*									
Sphalerite-galena			-						
Violarite									

Dominant magmatic sulfide compositions at Sudbury

Compositional diversity in Sulfides explained by Fractionation and inherent "nugget effect"

Objectives

- 1. Timelines and processes:
- 2. Diversity in styles of mineralization
- 3. Linkages between melt sheet processes and ore deposits
 - Source of the metals
 - Thickness of melt sheet
- 4. Primary magmatic and post-magmatic processes
- 5. Place Sudbury ores in a global context: past, present, and future

Distribution of ore deposits is not uniform around the basin

Thickness of the Main Mass Ni-Cu-PGE-depleted norite sequence

Variations in Ni, Cu, Pt, and Pd through the Main Mass (North Range)

Lightfoot (2016)

Lightfoot

Lightfoot (2016)

Relationship between melt sheet thickness and scale of mineral systems

Scale and quality of mineral system is a function of norite thickness

Main Mass record as prospectivity tool

Objectives

- 1. Timelines and processes:
- 2. Diversity in styles of mineralization
- 3. Linkages between melt sheet processes and ore deposits
- 4. Primary magmatic versus post-magmatic processes
- 5. Place Sudbury ores in a global context: past, present, and future

Low sulfide mineralization styles tend to be associated with magmatic ore systems (e.g. Nickel Rim)

Lightfoot (2016) and McLean et al. (2006)

Deformation undoubtedly modifies and re-distributes contact ores (e.g. Garson Deposit)

Understanding displacement on structures is critical to future discovery

Objectives

- 1. Timelines and processes:
- 2. Diversity in styles of mineralization
- 3. Linkages between melt sheet processes and ore deposits
- 4. Primary magmatic and post-magmatic processes
- 5. Place Sudbury ores in a global context: past, present, and future

Despite being eclipsed by the Noril'sk Camp, Sudbury remains the second largest resource of magmatic Ni sulfide

History of sulfide nickel discovery

Year of discovery of deposit

Lightfoot

Historic production at Sudbury

Effective exploration is required to populate the project pipeline and secure new mines at Sudbury

NO I

Time

Search for additional resources

Lightfoot (2016)

Discovery

production

The Sudbury sulfide ores have a competitive advantage in grade as well as metal value over laterites

Thank you

- Students (Sudbury projects): Mark Cooper, James Darling, Keith Farrell, Kathy Hattie, Grant Mourre, Mars Napoli, Jon O'Callaghan, Kostas Papapavlou, Aaron Venables, and Yu-Jian Wang
- Co-investigators: Reid Keays, Chris Hawkesworth, Tony Naldrett, Mike Lesher, Steve Barnes, Ed Ripley, Ulrich Riller, Dan Kontak, Gord Osinski, Bob Linnen, Fernando Corfu, Will Doherty, Steve Prevec, Mei-Fu Zhou, Igor Zotov
- Industry: Vale (special recognition to the many exploration staff)
- Graphic design: Alex Gagnon
- Preparation and photography of samples: Ben Vandenburg

